Mark Scheme - PI1.2 Redox Reactions

2 [1] Filtration (a) $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ (b) [1] Carbon O.S. at start = +3; Carbon O.S. at end = +4 (c) (i) [1] $2MnO_4^- + 16H^+ + 5C_2O_4^{2-} \rightarrow 2Mn^{2+} + 8H_2O + 10CO_2$ (ii) [1] (d) Colour change of manganate(VII) is used to indicate the change [1] Volume of manganate(VII) = 27.92 cm^3 (1) (e) Moles manganate = $27.92 \times 0.020 / 1000 = 5.584 \times 10^{-4} \text{ mol (1)}$ Moles oxalate = $5.584 \times 10^{-4} \times 5/2 = 1.396 \times 10^{-3} \text{ mol (1)}$ Concentration = $1.396 \times 10^{-3} / 25 \times 10^{-3} = 0.0558 \text{ mol dm}^{-3}$ (1) [4] (i) $K_a = \frac{[H^+][HCOO^-]}{[HCOOH]}$ (f) [1] $[H^{+}]^{2} = K_{a} \times [HCOOH] = 1.8 \times 10^{-4} \times 0.2 = 0.36 \times 10^{-4} (1)$ (ii) $[H^+] = 6.0 \times 10^{-3} \text{ mol dm}^{-3} (1)$ $pH = -log[H^+] = 2.22(1)$ [3] A buffer keeps the pH almost constant when small amounts of acid or base (iii) are added (1) HCOOH ≠ HCOO- + H+(1) Adding acid shifts the equilibrium to the left which removes H+/ Adding base removes H+ shifts equilibrium to right which replaces H+ (1) OR answer in terms of H+ reacting with methanoate from sodium methanoate when acid added (1) and methanoic acid replacing H+ when base removes H+ (1) MAX 3 [3] QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter [1]

Total [20]

[1]

[2]

(g)

(i)

(ii)

Orange to green

CrO₄²⁻ (1) Yellow (1)

3 (a) diagram with labels to show

H₂/H⁺ shown in electrode (1)

platinum (in both electrodes) (1)

 $Fe^{2+}(aq)$ and $Fe^{3+}(aq)$ (1)

high resistance voltmeter (1)

salt bridge (1)

gas at 1atm pressure, solutions of concentration 1 mol dm⁻³, temperature 298K (1)

[any 5]

- (b) (i) successive ionisation energies increase gradually/ the energies of the d orbitals are similar [1]
 - (ii) $1s^22s^22p^63s^23p^64s^23d^{10}/3d^{10}4s^2$ [1]
 - (iii) after 4s electrons lost 3d is full/ stable/ d electrons ionisation energy very high [1]
- (c) (i) violet solution contains V2+ (1)

SEP Zn²+/ Zn is more negative than VO $_3^-$ / VO²+ and VO²+/ V³+ and therefore

releases electrons/ VO_3^-/VO^{2+} and VO^{2+}/V^{3+} are more positive than

Zn²⁺/ Zn and are stronger oxidising agents (1)

 V^{2+} cannot be reduced (to V) since SEP is more negative than Zn^{2+}/Zn (1) [3]

- (ii) 1.1V (ignore sign) [1]
- (iii) $Zn(s) \rightarrow Zn^{2+}(aq) + 2e / Zn(s) \rightleftharpoons Zn^{2+}(aq) + 2e$ with some indication of direction [1]
- (iv) if Zn²⁺(aq) concentration increased equilibrium moves to LHS (1)

so electrode potential becomes less negative (1) [2]

(d) (i)
$$2.74 \times 10^{-3}$$
 (mol) [1]

(ii)
$$1.37 \times 10^{-3}$$
 (mol) [1]

(iii)
$$M_r KIO_3 = 214.1$$

moles
$$KIO_3 = 0.978/214.1 = 4.57 \times 10^3 \text{ in } 250 \text{ cm}^3$$

$$4.57 \times 10^4 \text{ in } 25 \text{ cm}^3$$
 [1]

(iv)
$$1.37 \times 10^{-3}/4.57 \times 10^{-4} = 3$$
 (1)

equation 1 is correct since 3 moles of iodine formed (mark awarded for reason) (1) [2]

Total [20]

(b) Oxidation state of carbon at start = +2 and at end = +4 so it has been oxidised (1) Oxidation state of iron at start = +3 and at end = 0 so it has been reduced (1) Credit 1 mark if all oxidation states are given correctly with incorrect or no reference to what has been oxidised/reduced [2]

(ii)

Diagram must be unambiguous, either by showing 3 dimensions, bond angles or through labelling, must identify iron and oxide as ions

[1]

(e) Pair of shared electrons in both (1)

Covalent – 1 electron from each atom and
Co-ordinate – 2 electrons from same atom (1) [2]

(f) Lattice / regular arrangement of positive ions (1)
Sea of delocalised electrons (1)
Electrons can move to form an electrical current (1)
Strong forces / bonds between the delocalised electrons and the metal ions require a lot of energy to break / high temperature to overcome (1)

QWC: selection of a form and style of writing appropriate to purpose and to complexity of subject matter

[1]

Total [15]